Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan.
نویسندگان
چکیده
The ggaAB operon of Bacillus subtilis 168 encodes enzymes responsible for the synthesis of poly(glucosyl N-acetylgalactosamine 1-phosphate) [poly(GlcGalNAc 1-P)], a wall teichoic acid (WTA). Analysis of the nucleotide sequence revealed that both GgaA and GgaB contained the motif characteristic of sugar transferases, while GgaB was most likely to be bifunctional, being endowed with an additional motif present in glucosyl/glycerophosphate transferases. Transcription of the operon was thermosensitive, and took place from an unusually distant sigma(A)-controlled promoter. The incorporation of the poly(GlcGalNAc 1-P) precursors by various mutants deficient in the synthesis of poly(glycerol phosphate), which is the most abundant WTA of strain 168, revealed that both WTAs were most likely to be attached to peptidoglycan (PG) through the same linkage unit (LU). The incorporation of poly(GlcGalNAc 1-P) precursors by protoplasts confirmed the existence of this LU, and provided further evidence that incorporation takes place at the outer surface of the protoplast membrane. The data presented here strengthen the view that biosynthesis of the LU, and the hooking of the LU-endowed polymer to PG, offer distinct widespread targets for antibiotics specific to Gram-positive bacteria.
منابع مشابه
tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168.
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter le...
متن کاملThe location of N-acetylgalactosamine in the walls of Bacillus subtilis 168.
The N-acetylgalactosamine in the walls of Bacillus subtilis 168 occurs in two polymers. One of these contains N-acetylgalactosamine, glucose and phosphorus and is attached to the peptidoglycan through an alkali-labile bond; preliminary studies indicate that a repeating unit of this polymer is glucosyl-N-acetylgalactosamine 1-phosphate. N-Acetylgalactosamine is also associated with the peptidogl...
متن کاملTeichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essentia...
متن کاملStudies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168.
The biosynthetic enzymes involved in wall teichoic acid biogenesis in gram-positive bacteria have been the subject of renewed investigation in recent years with the benefit of modern tools of biochemistry and genetics. Nevertheless, there have been only limited investigations into the enzymes that glycosylate wall teichoic acid. Decades-old experiments in the model gram-positive bacterium, Baci...
متن کاملIn vitro synthesis of the unit that links teichoic acid to peptidoglycan.
The role of cytidine diphosphate (CDP)-glycerol in gram-positive bacteria whose walls lack poly(glycerol phosphate) was investigated. Membrane preparations from Staphylococcus aureus H, Bacillus subtilis W23, and Micrococcus sp. 2102 catalyzed the incorporation of glycerol phosphate residues from radioactive CDP-glycerol into a water-soluble polymer. In toluenized cells of Micrococcus sp. 2102,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 6 شماره
صفحات -
تاریخ انتشار 2006